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Note 

A Miller Algorithm for an incomplete 
Bessel Function 

1. INTRODUCTION 

A canonical form of an incomplete Bessel function with various applications in 
physics is defined by the formula 

K,(~, y) = J-” e-cxt+“‘t) t”-’ dc 
1 

with x > 0 and y > 0 and v arbitrary. In this note we shall introduce a Miller 
algorithm for evaluating this function. A continued fraction for a quotient of 
confluent hypergeometric functions U(a + 1, b, x)/U@, b, x) enters into our 
algorithm. We derive some mathematical estimates for the stability of this continued 
fraction. In the last section we shall demonstrate an occurrence of this function in the 
summation of potential lattice sums via the “method of theta functions.” 

2. FUNDAMENTAL FORMULAS 

It is easy to derive the expansion 

K " (x, ~)=e-(~+~)[U(l, V+ 1,x)+ U(2, V+ l,x)y + U(3, v + 1,x)-# + **a], (2) 

where U(a, b, x) is the confluent hypergeometric function in [ 11. When a > 0 and 
x > 0 then one has the integral representation 

T(U) U(a, b, x) = ex eeX'(t - l)a-Ltb-a-* dt. (3) 

Formula (2) is the analytic continuation of K,(x, y) to the complex plane. 
The function K,(x, y) can be related to the modified Bessel function K,(x) in two 

ways. We first recall the integral formula 

K,tx) = f,” ,-(X/2,(t+l/t, f-1 dt 
a 
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from Lebedev [9]. Decomposition of the interval of integration then leads to the 
formula 

K”(X) = f [K”($L-+) + K”W, x/2)1. (5) 

We next demonstrate that K,(x, v) is an incomplete Bessel function in Agrest and 
Maximov [2]. If we denote (our notation) 

L,(x, z) = $1” ,-(X/z)(f+l/t) t-1 dt, (6) 
.? 

then one has the relation 

L”(X,L)=+” f,E . ( 1 (7) 

We next obtain an estimate of the rate of convergence of the series expansion (2). 
When v is real and x, y are positive then one has 

f U(k + 1, v + 1, X).# < U(l, v + 17 x) : Y%l. 
k=n k=n 

It follows that (2) converges at least as well as the exponential series 
ey = 1 + y + y2/2! + . . . 

The basic formula of Agrest and Maximov [2] (a formula which is also mentioned 
in Faxen [6]) becomes, in our notation, 

K,(x, y) = e-“[q(v, x) - ycp(v - 1, x) + y$(v - 2, x)/2! f . ..I. (9) 

where in our notation [ 121 

i 

cc 

(p(v, x) = ex e-X*t”-’ dt. (10) 
1 

The principal reason for deriving an alternative computational procedure for 
K,(x, y) comes from the severe cancellation instability of (9) when y > 0 gets large. 

3. DERIVATION OF A MILLER FORMULA 

A Miller algorithm is directly derivable from (3), but we shall introduce the notion 
of a Miller formula, which we define to be a series whose terms can be generated 
from the successive iterates of a continued fraction generated by backwards 
recursion. Gautschi [S] discusses Miller algorithms in the usual sense. 
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The Miller formula for our function is given by 

K,.(x, y) = e-(x+y)U(l, v + 1, x) 

x 1+y 
[ 

U(2, Y + 1, x) 
U(l,v+ 1,x) + Y2 

U(2,v+ l,x)U(3,v+ 19x1 
U(l,v+ l,x)U(2,v+ Lx)+” 1 .(ll) 

The quotients that appear in this series are related by the fractional linear transfor- 
mation 

U(a, b, x> 1 
u(a - 1, 6, x) = (2u + x - b) - a( 1 + a - b) U(u + 1, b, x)/U(u, b, x) (12) 

which gives rise to the continued fraction 

U(a, b, x) 11 a(1 +a-b)l (a + 1)(2 + a -b)l 
U(u - 1, b, x) = j(2u + x - b) - I(2u + 2 + x - b) - I(2u + 4 + x - b) 

(a + n)(2 + a t n - b)l - - 
((2ut2ntx-b)o ’ (13) 

where o = U(u + n + 1, b, x)/U(u + n, 6, x). With the initialization o = 0 one obtains 
a convergent of the infinite continued fraction, and n is called a starting index. 
Convergence of such continued fractions is demonstrated in Perron [IO] for x > 0. 
Save for stability problems, a choice of sutTiciently large starting index n will yield 
quantities which approximate U(u, b, x)/U(u - 1, b, x) to any desired degree of 
accuracy. 

In the next section we derive the simple estimate U(u + 1, b, x)/U(u, b,x) < 
l/(u t x), which is valid whenever a > 0 and x > 0. Term-by-term comparison then 
yields 

U(2) 
ltYu(l)+Y 

2 WI U(3) 
cT(1)u(2)+ “’ 

1 
G 1 + Y (1 +x) + Y2 

1 
(1 t x)(2 t x) + “’ ’ 

where U(n) = U(n, v + 1, x). This estimate ,shows that the rate of convergence of (11) 
is frequently better than that of the exponential series. Moreover, it is relatively easy 
to determine a truncation index for (11) by using (14). 

The leading factor U(1, v + 1, x) in (11) may be evaluated in various ways. For 
one thing the function U(u, b, x) itself has a Miller formula. One has 

+ u(ut l)c(c+ 1) U(ut l,b,x) U(u+2,b,x) 
1.2 U(u,b,x) U(ut l,b,x)+“’ 1 -I, (15) 

581/39/l-16 
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where c = 1 + a - b. In thin disguise this Miller formula is precisely the one devised 
by Temme [ 111 for evaluating K,(x). 

Another method for evaluating the leading factor comes about by noting that 
U(1, v + 1, x) = q(v, x) in terms of our notation (10). 

This function has the well-known Legendre continued fraction 

(p(vx)- 11 I (l--N I 11 ; @-“)I 1 21 ; P-VI I 31 +...* 3 
Ix 11 Ix 11 Ix 11 Ix (16) 

A manuscript which details a careful stability analysis of this continued fraction may 
be obtained from the author on request. The Legendre continued fraction converges 
rapidly when x > 0 is not small and is stable if v < 1. In computer evaluation, both 
Miller formulas are amenable to the method of nested operations for evaluating trun- 
cated series. We abbreviate U(n) = U(n, v + 1, x) to obtain 

l+Yz n U(2) U(3) 
+...+y u(1)uo”’ 

U(n + 1) 

u(n) 

=l+ygf( . ..(l+y u;yl,(l+Y u$+,“)) -) - (17) 

Next we abbreviate U(n) = U(n + a, b, x) to obtain 

1 +E U(l) (u),(c), U(l) w 
l! U(O)+-+n!--- 

u(n) 
U(O) U(l) U(n - 1) 

= 1 + E U(l) 
-( 1 U(O) 

1 + (a + 1m+ 1) U(2) 
2 U(l) 

X 
( ( 

,,. 1 + @+n- l)(c+n- 1) u(n) 
U(n- 1) “’ ’ 1) 1 

(18) n 

where (a), = u(u + 1) ... (a + n - 1). These two formulas together with (12) allow 
one to make an extremely rapid evaluation of the Miller formulas (11) and (15) after 
one has devised a suitable approximation for the starting index n, which takes into 
account the continued fraction approximation as well as the series truncation. 

To give an idea of the running time of the algorithm we tabulate in Table I the 
empirically determined starting index n(x) for evaluating K,(x, x) = K&Lx). 
Computation was carried out in floating point arithmetic accurate to 11 decimal 
digits on a Burroughs B7800 computer. Except for rounding errors in the last digit, 
the results agreed with tabulated values for &(2x) in [ 11. 

In the next section we shall explain why our algorithm for K,(x, y) will be reliable 
when v < 2 and x > 0 and y > 0. However, upward recursion is stable when v > 0. 

K,+,(X, y)=;e-(x+y’ + i K”(X, Y) + z K,- ,(x9 Y). (19) 
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TABLE I" 

X n(x) X n(x) X 4x1 

0.2 170 2.0 38 12.0 26 
0.3 130 3.0 30 14.0 26 
0.4 108 4.0 26 16.0 28 
0.5 80 5.0 26 18.0 30 
0.6 74 6.0 24 20.0 30 
0.7 74 7.0 24 22.0 32 
0.8 68 8.0 26 24.0 34 
0.9 62 9.0 26 26.0 34 
1.0 56 10.0 26 28.0 34 

’ Starting index function n(x) for computing K,(x, x) to. 11 decimal digits. 

The Bessel function K,,(x). It is worthwhile noting that these Bessel functions of 
pure imaginary parameter, which occur in Lebedev [9] and elsewhere in 
mathematical physics, have few effective expansions. Our method with Ki,(x) = 
[K,,(x/2, x/2) + K-,,(x/2, x/2)1/2 is no exception. However, one has K,,(x) = 
R*‘* e-“(2x)‘“U(iv + $,2iv + 1,2x). A while ago the author communicated to Cartier 
[4] that the Miller formula (15) is effective in this case. This colleague has continued 
to collect a lot of information on effective algorithms for this Bessel function. 

4. STABILITY ANALYSIS 

If correctly computed iterates U(n + 1, v + 1, x)/L@, v + 1, x) are entered in our 
formula (11) with y > 0 then one is summing only positive terms and one has to 
contend only with the accumulation of rounding error, which is quite innocuous. 

On the other hand, it is well known that continued fractions can be quite 
treacherous and sporadic in their behavior. Thus in order to guarantee the numerical 
effectiveness of our Miller formula (11) we shall make some mathematical assertions 
regarding the stability of the continued fraction that enters into our algorithm. One is 
able to assert stability by making some restrictive assumptions regarding parameters. 
This result will demonstrate that our algorithm for K,(x, v) is numerically stable 
when v < 2, x > 0, and y > 0. 

Let T be a differentiable function of a single variable. One defines 
6,(o) = w;T*(o)/T(w). The function T is stable at o if 1 e,(w)] < 1. 

We wil now consider the stability of the fractional linear transformation 

1 
T(w) = (2~2 + x - b) - a( 1 + a - b)w ’ (20) 



238 RIHOTERRAS 

which is relevant to the discussion because T(U(a + 1, b, x)/U(a, 6, x)) = 
U(a, b, x)/U(a - 1, b, x). We have the stability factor relation 

e,(u(* + 1, b, x)/U& h xl) = 
U(u t 1, b, x) WI, b, x) 

u(a b x) u(a _ 1 b x) *Cl + a - b). (21) 
7 7 , 9 

LEMMA. Ifa>Oandb<a+l then 

U(a + 1, b, x) 

I 

1 1 

U(*, b, 4 ‘min (a+ l-b+x) ‘(a I ’ (22) 

ProoJ: One is able to deduce these estimates from U(a + 1, b, x)/U(a, b, x) = 
[(a + 1 - b + xU(a f 1, b + 1, x)/U(a + 1, b, x)] - ’ and U(a + 1, b, x)/U(a, b, x) = 
l/a - U(a, b - 1, x)/aU(a, b, x) along with (12). 

PROPOSITION. Zfa>O,b<a+l,andx>l thenonehas 

0 < O,(U(u + 1, b, x)/U(a, b, x)) < 1. (23) 

A continued fraction is stable if each individual fractional linear transformation in 
backwards recursion is stable at its corresponding argument. One is able to check on 
a computer that a continued fraction which meets our stability test will execute 
accurately. 

COROLLARY. If v ( 2 and x > 1 or if x > 1 + v then 

up, v + 1, x) 11 w -VII 3(3 -VII 
U(1, v + 1, x) = ((3 +x - v) - ((5 + x - v) - ) (7 + x - v) 

- . . (24) 

is stable. 

A computer check turned up some significant instability only in the case when 
v > 0 was very large and x > 0 was very small. 

5. THE PARALLEL PLATE POTENTIAL 

The potential generated by a charge q at (x, y, z) between conducting plates 
perpendicular to the x-axis at x = 0 and x = a, as measured at (u, U, w) between the 
plates, is represented by the absolutely convergent series 

@(xv Y, z I 4 u, w) 

=q z #x-u+2 
(25) 

an, y - v, z - w)[l-’ - [1(-x - u + 2an, y - u, z - w)ll-I), 
n= -52 

where [](a, ZI, w)ll = (u’ + u2 + w2)‘j2. Matters are so delicate that one cannot even 
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distribute summation over the subtraction. The convergence is slow. We note that this 
formula is a special case of an exhaustive study of such lattice sums appearing in 
Terras and Swanson [ 13, 141. The method of theta functions is further developed in 
111. 

In a recent paper Fong and Kittel [7] derived a rapidly convergent series for this 
potential. One has 

@(x, y, z 1 u, 21, w) = 44 5 sin(nnx/a) sin(lmu/u) K,(nnp/a), (26) 
a n=1 

where p2 = (y - v)’ + (z - w)‘. This formula converges slowly when p is small and is 
singular at p = 0. For this reason one seeks additional rapidly convergent expansions. 
When one imitates Ewald’s “method of theta functions” [3,5] one obtains a formula 
which is not singular for p = 0. One has 

@(x, Y, z I u, v, w) 

=2q&i fJ c lF(7r~)(2nu+~x-u,y-v,z-w)~~2R) 
PI=--a) A=],-I 

+ 2qu-’ 2 sin(nnx/u) sin(rrnu/u) K,(4n/2u)2R-1, np2R), 
PI=1 

(27) 

where R > 0 is an arbitrary parameter and where 

F(x) =lm P+dt= ;I” e-xtt-“2 dt= fe-“co(~,2,x), 
1 1 

(28) 

In writing a computer code we took R = C2. The truncations cz= -,, CA= ,, _, 
and xi=, yielded data to 11 decimal digits. 
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